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Abstract. Magnetoresistance measurements and theoretical calculations for two-dimensional
electron systems under a perpendicular magnetic field are presented which illuminate transport
effects due to a periodic electrostatic potential modulation. We focus on features arising from the
resolution of the magnetic miniband structure which are beyond the perturbative regime governed
by the dispersion of Landau bands. Our non-perturbative quantum-mechanical calculations reveal
that the dispersion of individual minibands is responsible for the complicated behaviour of the
magnetoresistance in the regime of intermediate modulation strength. In particular, the interplay
between miniband and scattering contributions to the conductivity leads to an almost structureless
magnetoresistance in this regime followed by the formation of antidot peaks due to the miniband
conductivity.

1. Introduction

Lateral superlattices superimposed on semiconductor heterostructures have revealed several
phenomena that had not been predicted. Experimentalists and theorists have worked hand
in hand to discover commensurability phenomena in the classical as well as in the quantum
regime. A crucial parameter for all experiments is the ratio of the potential modulationV0 to
the Fermi energyEF of the two-dimensional electron gas (2DEG)—in other words, whether
the electrons have enough kinetic energy to overcome the artificially imposed potential pillars
or not. In the regime of weak potential modulation,V0 � EF, Weiss oscillations [1, 2]
dominate the magnetoresistance that can be explained classically by the guided centre drift
of cyclotron orbits [3]. In terms of quantum mechanics, the dispersion of the Landau bands
and the thus-arising group velocity lead to an additional conductivity mechanism, namely
the Landau-band conductivity. For strong potential modulation, the dominant maxima of the
magnetoresistance [4, 5] follow classically from the magnetic-field-induced regular parts in
a predominantly chaotic phase space [6, 7]. In the quantum-mechanical picture, the strong
potential modulation leads to a mixing of the Landau bands which split up into subbands.
The spatial dispersion of these magnetic minibands is now the basis for the explanation of
the observed magnetoresistance maxima [8–10]. While the classical description supplies
intuitive pictures for the extreme modulation regimes in the framework of ballistic electron
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transport, it is not obvious how the intermediate regime, which is the focus of this paper,
can be explained in classical terms.

At low temperatures, the classical commensurability oscillations have superimposed
upon them semiclassical oscillations that can only be explained quantum mechanically.
Features periodic in the magnetic fieldB (of Aharonov–Bohm type) and 1/B (of Shubnikov–
de Haas type) were observed and were explained by the details of the respective potential
landscape [11, 12]. Moreover,B-periodic oscillations arising from the quantum-mechanical
band structure of a system with a periodic potential in a magnetic field were predicted
for lateral superlattices with strong modulation potential and small lattice constant [13].
Quantum mechanics is crucial in order to understand these phase-coherence effects.

This paper focuses on a set of experiments where the amplitude of the potential
modulation can be tuned over wide ranges via an applied gate voltage. The observations
in the regime of intermediate modulation correspond neither to a monotonic increase of
the amplitude of the Weiss oscillations predicted by classical calculations, nor even to
oscillations of opposite phase governed by scattering between Landau bands as they follow
from quantum-mechanical perturbation theory. Calculations based on the miniband structure
arising in a magnetic field and using the concept ofminibandconductivity reveal a better
understanding of the experimental observations and even lead to predictions beyond what
has been seen experimentally.

2. Experiments

In our samples, the 2DEG is realized by employing modulation-doped GaAs–(GaxAl 1−x)As
heterojunctions grown by molecular beam epitaxy. AtT = 4.2 K the typical mobility
in these samples is about 40 m2 V−1 s−1, the carrier densityns ranges from 3.0 to
5.2× 1011 cm−2. This corresponds to an elastic mean free pathL = 4.7µm and to a
Fermi wavelengthλF of about 40 nm. The 2DEG is 38 nm beneath the crystal surface. It is
necessary for the distance to be this small to obtain a steep and strong modulation potential.

The Hall-bar geometry is defined by wet chemical etching. The area between the
voltage probes is 20µm× 8 µm, which exceeds the scale of elastic and inelastic mean
free paths. After creating a lattice of voids by using electron-beam lithography and an
electron-sensitive resist layer (PMMA) on the sample surface, the latter is covered with an
evaporated-metal gate (cf. figure 1). The proximity of this gate to the 2DEG now offers
the unique possibility to induce a lateral superlattice potential, which is tunable over a wide
range, while simultaneously realizing a lattice constant as small as 80 nm. Thus we were
able to observe traces of the famous ‘Hofstadter butterfly’ [14] in the magnetoresistance as
described in a previous publication [15, 16].

In this paper we will present magnetoresistance measurements for a system with the
lattice constanta = 215 nm (see figure 1(b)) where the superlattice potential is continuously
tuned from weak to strong modulation by changing the gate voltage from+200 meV to
−750 meV. In the regime of weak modulation strength, electrons at the Fermi energy
move classically along distorted, weakly perturbed cyclotron orbits (in the absence of an
accelerating electric field). The opposite situation arises when the modulation amplitude is
larger than the Fermi energy. Since the electrons are now classically excluded from certain
‘islands’ within the Fermi sea, this is called anantidot system.

Figure 2 gives a detailed account of the magnetoresistance properties atT = 4.2 K for
the transition from one limit to the other. From top to bottom we distinguish three regimes
that may be labelled as regions of strong, intermediate and weak-modulation strength. In
the weak-modulation regime (Vg = +200 mV to−200 mV), the magnetoresistanceρxx
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Figure 1. (a) A schematic sketch of a superlattice sample structure. By applying a voltage
between the Au–Ti gates on the surface and the 2DEG, a periodic potential modulation is
superimposed on the 2DEG. (b) An AFM image of the electron-sensitive resist layer with a
lattice period of 215 nm.

shows two sets of(1/B)-periodic oscillations. At large magnetic fields there are the usual
Shubnikov–de Haas (SdH) oscillations. AtT = 4.2 K, they cannot be resolved below a
magnetic field ofB = 0.75 T, where their envelope, the second set of oscillations, becomes
the predominant structure ofρxx . They are related to a commensurability of the superlattice
constant and the electronic cyclotron diameter at the Fermi energy.

A larger negative gate voltageVg corresponds to a stronger repulsion of the electrons
beneath the voids in the sample—that is, to a stronger modulation amplitude. The enhanced
repulsion leads to a reduced carrier density. In other words, a change in the Fermi energy
intimately relates changes in the experimental potential modulation and the carrier density.
This can be observed in a shift of the SdH oscillations.

The middle panel of figure 2 shows experimental magnetoresistance traces for an
intermediate range of potential modulations. At magnetic fieldsB > 1 T, SdH oscillations
are still visible. The amplitude of the commensurability oscillations has strongly decreased
and they are no longer strictly(1/B)-periodic. AroundB = 0.9 T, a pronounced maximum
starts growing and in the regime of strong potential modulation (upper panel) develops
into the feature that is generally related to an electron orbiting around a single antidot
[17, 18]. Simultaneously, another maximum emerges at lower magnetic fields (B = 0.2 T)
and develops into the usual antidot trace, being then identified with an electron trajectory
at around four antidots. In its early phase of development, this maximum looks similar to
features that were identified with magnetic breakdown for samples with a 1D modulation
[19]. There are several features, such as the weak oscillations following the first maximum
at aroundB = 0.2 T in the centre traces (Vg = −400 mV) that we cannot attribute to
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Figure 2. Experimental magnetoresistance traces for the transition from weak (bottom) to strong
modulation (top), witha = 215 nm atT = 4.2 K. Vg is the applied voltage at the metal gate
on the surface, changed in steps of 50 mV. From the Shubnikov–de Haas oscillations one deter-
mines a carrier density between 3.0 and 5.2× 1011 cm−2, which increases from top to bottom.

specific commensurability conditions. Furthermore, it is not at all obvious how the magnetic
breakdown should develop into a feature that is related to pinned electron orbits. This is
why numerical calculations as presented in the next section are absolutely crucial if we
are to understand the regime of potential modulations that is not accessible to perturbative
approaches.

The mobility in two-dimensional electron gases is known to be a monotonically growing
function of the carrier density. The length of the elastic mean free path determines the
maximum length for ballistic orbits that can play a role in lateral superlattices. Furthermore,
there is a difference between the Drude mobility as deduced from theB = 0 resistance and
quantum mobility that can be obtained from the amplitude of the SdH oscillations. There
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is no simple notion of which mobility and, with it, which mean free path determines the
strength of the commensurability features [20]. In the experiments, the mobility changes
with carrier density and potential amplitude, both being tuned with the gate voltage. This
interrelationship between the respective quantities makes it difficult to define the precise
values for the calculation.

3. Theory

We describe the quantum-mechanical properties of two-dimensional (2D) electrons in the
periodic lateral potentialV (x, y) and in a perpendicular magnetic field in the basis of the
eigenstates of the corresponding single-particle effective-mass Hamiltonian. They can be
classified by the magnetic wave vectorΘ and the miniband indexn for integer and rational
numbersn8 of flux quanta per unit cell of the lateral lattice [21]. For the scalar potential
we use the phenomenological model

V (x, y) = V0

[
cos

(
π

a
x

)
cos

(
π

a
y

)]2α

(1)

with lattice constanta. The theoretical results have been obtained for a typical value
a = 200 nm which is close to the experimental one. The steepness of the potential can be
adjusted by the parameterα and its strength is given by the amplitudeV0. The calculations
have been carried out for a fixed valueα = 4 varying onlyV0. Note that the transport
properties are influenced by the potential shape as well [6, 10–12].

Figure 3. Magnetic miniband structure forB = 1.034 T (n8 = 10) and different modulation
amplitudes: (a)V0 = 1 meV, (b)V0 = 5 meV, (c)V0 = 10 meV and (d)V0 = 20 meV. For
comparison, the ladders of the Landau levels for the unmodulated system, with ¯hωc = 1.80 meV,
are shown in the centres.

Figure 3 is an example of the resulting miniband structure whenn8 = 10. For different
modulation amplitudes the dispersionEn(Θ) is shown along the axis0–A in the [10]
direction and0–M in the [11] direction within the first magnetic Brillouin zone. In the case
of a small modulation amplitude (a), the degenerate Landau levelsEnL = h̄ωc(nL + 1

2) are
split into ten almost dispersionless minibands, which are clustered around the positions of
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the Landau levels. In general, ifn8 = p/q, one obtainsp minibands from each Landau
level. With increasing modulation strengthV0 the dispersion becomes more pronounced
and the splitting grows. In the strong-modulation regime,V0 � h̄ωc ((c) and (d)) one
cannot associate each miniband with a particular Landau level because the Landau gaps are
almost closed then. ForE < 2 meV the kinetic energy of the electrons corresponds to a
cyclotron radiusRc (or a spatial extent of their wavefunctions) of less than 40 nm, which
is much smaller than the lattice constanta = 200 nm; the electrons are localized and the
energy bands remain flat. But even for higher energies one finds flat minibands. The Fermi
energyEF lying in regions of flat or broad minibands does indeed play an important role
for the transport properties of the system, since the dispersion of the latter gives rise to an
additional contribution to the conductivity.

Within the regime of weak modulation, a perturbative treatment has been developed
which ignores the coupling of different Landau levels [22]. In this approach, instead of
using the miniband indexn the eigenstates are labelled by the quantum numbersnL and
j , wherej counts the subbands emerging from thenLth Landau level. When the splitting
of the subbands which correspond to a particular Landau quantum number is so small that
level broadening due to impurity scattering prevents a resolution of the individual subbands,
one may regard each such group as aLandau bandof oscillating width. Flat bands appear
for

2R(nL)
c = a

(
λ− 1

4

)
λ = 1, 2, . . . (2)

i.e. when the cyclotron diameter at the energy of thenLth Landau level satisfies a
commensurability condition involving the lattice constant. In this case, the exact internal
subband structure may be neglected in aquasiclassicalcalculation of the conductivity. The
effect of higher harmonics of the modulation potential has also been investigated within this
context [23].

In figure 4 the density of statesD(E) derived from the non-perturbative calculations is
displayed for three different modulation amplitudes. The level broadening due to impurity
scattering which we take into account in the self-consistent Born approximation (SCBA)
[8, 9] smears out the details of the original density of statesN(E). The bandwidth oscillation
with the Landau-level numbernL predicted by equation (2) can be seen from the envelope
of the maxima of the broadened DOS for weak modulation (figure 4(a)). With increasing
modulation amplitude one recognizes the breakdown of perturbation theory as the Landau
gaps close (figures 4(b) and 4(c)). The emergence of extended states connected with the
dispersion ofindividual minibands is, however, hidden inD(E) and will be seen more
clearly in the transport properties.

The diagonal and Hall conductivities are calculated in linear-response theory by means
of the quantum Kubo formula [8, 9]. The diagonal components in units ofe2/h can be
written as

σµµ(E) = 2π`2

n8
(h̄ωc)

2
∑
n1,n2

∫
d22

∣∣〈n1Θ|kµ|n2Θ〉
∣∣2An12(E)An22(E) (3)

which has to be convolved with the derivative of the Fermi function. This formula involves
the impurity-averaged spectral functionsAn2(E) of the eigenstates|nΘ〉 and the matrix
elements of the kinetic-momentum operatorkµ. The integral runs over the first magnetic
Brillouin zone.

There are two different types of contribution to the diagonal conductivity. Ifn1 = n2 =
n, the matrix element ofkµ is proportional to the group velocity of an electron in miniband
n. It is connected with the miniband dispersionEn(Θ) via the Hellmann–Feynman theorem.
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Figure 4. The density of states before (left-hand column) and after impurity broadening
(right-hand column) forB = 1.034 T and different modulation amplitudes: (a)V0 = 1 meV,
(b) V0 = 5 meV and (c)V0 = 10 meV; the zero-field mobility isµe = 50 m2 V−1 s−1

(τ = 20 ps). Different scales are used forN(E) andD(E).

We call those contributionsminiband conductivity. Strongly dispersive minibands give a
large miniband conductivity whereas flat minibands give none at all. Notice that [An2(E)]2

is divergent without impurity scattering. The remaining part ofσµµ consists ofscattering
contributions arising from the overlap of the spectral functions with different miniband
indices (n1 6= n2), analogous to the situation in the unmodulated 2DEG in a perpendicular
magnetic field.

For weakly modulated systems with negligible Landau-level coupling, the authors of
reference [22] obtained expressions for the conductivity components in leading order in
V0. They divided the longitudinal conductivity into two parts as well—namely, anintra-
Landau-band(intra-LB) and aninter-Landau-band(inter-LB) contribution, according to
whethernL1 = nL2 or not. The spectral structure due to the oscillatory Landau-band width
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modifies the conductivity as it is obtained from the unmodulated 2DEG. As long as the
internal subband structure of a Landau band is not yet resolved due to impurity scattering,
the intra-LB contribution increases with the Landau-band width and has minima for the
flat-band conditions (2). At the same time, the inter-LB contribution which is essentially
proportional to the square of the density of statesD(E) shows maxima. If the impurity
scattering is weak enough, the intra-LB contribution determines the structure of the total
conductivity. Once, however, with increasing modulation amplitude, the level broadening
is no longer large enough to smear out the splitting of the Landau bands, it breaks down
rapidly due to the reduced overlap of spectral functions with different subband indicesj . For
stronger impurity scattering, the inter-LB contribution is predominant even for the smallest
modulation amplitudes. A very simple estimate based on the perturbation theory used in
reference [22] suggests that the corrections to the conductivity of the unmodulated 2DEG,
σ0, are

1σxx

σ0
∼ (1− β) cos2

(
2π
Rc

a
− π

4

)
(4)

as long as the breakdown of the intra-LB contribution has not yet taken place. Hereβ

depends on the scattering strength and is less than one for dominant intra-LB contribution
and greater than one for dominant inter-LB contribution. Furthermore,β increases
with carrier density and lattice constant (thus supporting inter-LB contributions), and its
dependence on these parameters is also influenced by the potential shape, of course.

These dependencies have been found experimentally, too [24]. The scenario in the
previous paragraph suggests that for sufficiently strong modulation the resistance should
show maxima for the flat-band conditions irrespective of the modulation strength. This is,
however, not the case. For higher modulation amplitudes, well beyond the perturbation
regime, we find that the main transport properties originate from the increasing dispersion
of the individual minibands. The analysis of the influence of thisminiband conductivity is
the central issue of our transport calculations.

In figure 5 the conductivity has been calculated from a fully quantum-mechanical, non-
perturbative diagonalization for four modulation amplitudes from 1 to 20 meV using a
temperature ofT = 4.2 K, a carrier density ofns = 3.75× 1011 cm−2, and a mobility
µe = 50 m2 V−1 s−1 (i.e. τ = τtr = 20 ps). The resistance obtained from inversion of the
conductivity tensor is given byρxx ≈ σxx/σ 2

xy for σxx = σyy � σ 2
xy (µeB � 1). Therefore

any oscillatory structure of the diagonal conductivity directly translates into the structure
of the magnetoresistance as long as the Hall conductivity remains featureless beyond its
Drude form. This can be seen in figures 5(b) and 5(d) forB < 0.9 T. The maxima in
ρxx at B ≈ 0.55 T andB ≈ 0.35 T for V0 = 1 meV are due to flat Landau bands with a
high density of states which result in maxima of the inter-LB contribution. The latter is the
only relevant mechanism for this small modulation strength at the chosen relaxation time.
Arrows indicate two flat-band conditions predicted by equation (2). They agree nicely with
the non-perturbative calculation. Slight deviations arising because of the higher harmonics
of the modulation potential are expected [23].

For V0 = 5 meV, additional maxima atB ≈ 0.65 T andB ≈ 0.40 T (marked by
stars in figure 5(b)) appear between the flat-band conditions; they stem from high miniband
dispersion at the Fermi energy, which leads to an enhanced miniband conductivity. Since
individual minibands are already resolved (cf. figure 4(b)), the concept of Landau bands
is no longer applicable. Despite an increased miniband conductivity, plotted as a dashed
curve in figure 5(d), the total conductivity is smaller than forV0 = 1 meV. The reason for
this is that, for the parameters used in the calculation, the loss of scattering conductivity
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Figure 5. The magnetoresistanceρxx and diagonal conductivityσxx for different modulation
amplitudes (a = 200 nm,T = 4.2 K, ns = 3.75× 1011 cm−2, µe = 50 m2 V−1 s−1): in the
resistance plot (left-hand panel) the commensurate magnetic fieldsB1 andB4 mentioned in the
text are marked by vertical dashed lines in (a). The stars in (b) indicate resistance peaks arising
from enhanced miniband conductivity. The latter is shown as a dashed curve in the conductivity
plot (right-hand panel) below the total conductivity (solid line). ForV0 = 1 meV (in (d)) the
miniband conductivity is too small to be visible. The numbers above the arrows in (c) indicate
the corresponding numbers of magnetic flux quanta per unit cell. The inset in (d) demonstrates
the almost Drude-like behaviour of the Hall conductivity forV0 6 5 meV.

which decreases because of the dispersion-related broadening of the density of states is not
yet balanced by the gain from the miniband contribution.

WhenV0 > 5 meV the miniband conductivity becomes the dominant part of the total
conductivity and determines all of the details of its structure (cf. the dashed curves in
figure 5(c)). For the interpretation of the resistance the influence of the Hall conductivity
can no longer be assumed to be Drude-like [8, 9]. Its complicated structure contributes to
the resistance maximum at aroundB1 = 1 T, the traces of which can already be observed
in σxx as the envelope of the finer oscillatory structures. The position of the maximum is in
accordance with a commensurability between the lattice constant and the cyclotron diameter
at the Fermi energy and can be interpreted in a simple classical picture as due to cyclotron
orbits that fit around one antidot [17]. A second peak at aroundB4 = 0.44 T corresponds
to a cyclotron motion around a group of four antidots. These peaks are also present in the
experiments of section 2. They are, however, shifted towards lower magnetic fields, which
indicates a lower carrier density.

A striking feature ofσxx consists inB-periodic oscillations that are superimposed on
the classical peaks: their period corresponds toexactly one flux quantum per unit cell.
Whenevern8 is an integer, the conductivity has a maximum. Since the effect originates in
the miniband conductivity one expects to find the reason for this oscillation to be related to
the miniband dispersion. Indeed, for rationaln8 each Landau level splits into an increasing
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number of minibands equal to the numerator ofn8 with decreasing dispersion, as is already
known from Hofstadter’s butterfly [14]. This effect has been analysed in more detail in
reference [13].

4. Discussion

In this section we will focus on the comparison between experimental and theoretical results.
As already mentioned, the experimental carrier densities extracted from the SdH oscillations
decrease with increasing potential modulation. Therefore we do not strive for a complete
quantitative comparison and use a lattice constant of 200 nm together with some typical
densities for the calculations. A small deviation from the experimental lattice constant does
not affect the qualitative features of the magnetoresistance.

In the regime of very weak modulation strength we have carried out calculations in
the perturbation scheme proposed in reference [22] but with much larger scattering timeτ

in order to demonstrate the conditions necessary to obtain dominant intra-LB conductivity.
Therefore we not only ignore inter-Landau-level coupling in the band structure but also
the quantum-mechanical effect that arises from a resolution of individual minibands (the
breakdown of the intra-LB conductivity). As already mentioned before, this quasiclassical
approximation is valid as long as the miniband splitting is small compared with the scattering
broadening0 [22].

The artificially high choice ofτ in figure 6(c) (about one order of magnitude larger
than in our non-perturbative calculations) provides the conditions that yield an intra-LB
conductivity which is comparable to the inter-LB contribution. Accordingly, additional
maxima appear between the flat-band positions, as a result of a high Landau-band dispersion
at the Fermi energy. They increase in height with higher modulation amplitudes; one has to
be aware, though, that the breakdown caused by the resolution of individual minibands is
not included in these calculations. Comparison with the experimental resistance (figure 6(b))
shows that intra-LB conductivity is indeed responsible for the measured resistance structures
at the smallest modulation strengths, with its pronounced maximabetweenthe flat-band
conditions.

How is this possible, given an electron mobility of less than 50 m2 V−1 s−1? A realistic
scattering mechanism with ionized impurities favours small-angle scattering. In this case
the intra-LB conductivity is increased with respect to the inter-LB contribution. Making
a quantitative statement, however, is difficult because the enhancement depends on the
magnetic field, even for a given ratio of the transport relaxation timeτtr and scattering
lifetime τ at B = 0. This has been shown by a classical calculation of the amplitudes of
Weiss oscillations in an anisotropic scattering model for a 1D modulation potential [20].
Since only one scattering time enters our theoretical concepts, one has to assume a much
higher scattering timeτ than in the experiment to account for a largeτtr and hence the
dominant intra-LB conductivity at the smallest modulation amplitudes.

For modulation amplitudes of 1 meV and 5 meV, we compare the exact calculations
with the experiment in the weak-modulation regime. Figure 6(a) shows agreement of the
positions of the resistance maxima and minima with the upper experimental curves in
figure 6(b), where intra-LB conductivity has already broken down and inter-Landau-band
scattering is dominant. With a carrier density of 5.0× 1011 cm−2, the miniband conductivity
is still very small.

For V0 = 5 meV, the latter already causes a little elevation inρxx (arrow) at
B = 0.55 T, which is located between two flat-band positions. The interplay of the two
transport mechanisms results in an almost structureless experimental resistance when the
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Figure 6. Comparison of experiment and theory for weak modulation atT = 4.2 K. (a) A
fully quantum-mechanical calculation for two modulation amplitudes witha = 200 nm,
ns = 5.0× 1011 cm−2 and µe = 50 m2 V−1 s−1 (assumingτ = τtr ≈ 20 ps). The arrow
marks a shoulder caused by the miniband conductivity. (b) The experiment withns ≈ (4.7–
5.2) × 1011 cm−2. The carrier density decreases with increasing modulation strength (upward
direction). (c) Quasiclassical perturbation theory (see the text) withns = 5.4 × 1011 cm−2

and τ = 200 ps forV0 = 0.5 meV. The dashed curve shows the resistance calculated with
the intra-LB conductivity only, using the Drude result for the Hall conductivity to perform the
tensor inversion. Vertical dashed lines indicate flat-band conditions derived from equation (2).
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two contributions to the total conductivity are of the same magnitude.
The scenario following from the calculations coincides with measurements at lower

temperatures (T = 30 mK) not shown here. The analysis of the envelopes of the SdH
oscillations similar to that in reference [24] shows that the intra-LB contribution to the
conductivity governs the resistance for the lowest modulation strengths whereas it has
already broken down at a gate voltage of−100 mV leading to a dominating scattering
contribution. The additional peaks emerging in the resistance for larger negative gate
voltages atB = 0.5 T and atB = 0.9 T are connected with a clear decrease of the
amplitude of the SdH oscillations in these field regions which indicates the increasing
miniband conductivity.

The decrease ofσxx (andρxx) in the calculations betweenV0 = 1 meV andV0 = 5 meV
is due to the reduction in the scattering conductivity when the dispersion of the minibands
becomes larger. For sufficiently large modulation strength the miniband conductivity can
compensate for that loss. The experiments show a similar feature which can be observed
at B = 0.9 T where the resistance curves stay close together until miniband conductivity
finally governs the resistance structure.

Figure 7. The experimental magnetoresistance for intermediate modulation strength with
a = 215 nm andT = 4.2 K. The modulation strength increases in the upward direction.
For comparison, the theoretical resistance curve forV = 10 meV,ns = 3.75× 1011 cm−2 and
a = 200 nm is shown (with a different resistance scale). The vertical thin lines are guides to
the eye.

For higher modulation amplitudes, miniband conductivity is the important transport
mechanism. But since the influence of the Hall conductivity on resistance features can no
longer be ignored, additional structures merge with those from the diagonal conductivity
whenρxx is calculated by tensor inversion. The experimental resistances (see figure 7) show
broad maxima in the region around 1 T and below 0.5 T. The position of the peak at around
1 T is near the commensurability condition for classical motion around one antidot; the other
one corresponds to possible orbits around four antidots. Both maxima are reproduced in the
calculation (withV0 = 10 meV), but theB-periodic quantum oscillations with resistance
maxima at integern8 [13], which are visible in the theoretical traces, are not present in the
experiment. Their amplitudes, which are much larger than the numerical inaccuracy in our
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computations, depend on the scattering broadening of the energy levels. It is generally not
easy to obtain a reliable value for the relevant parameter0 since the relation between the
transport relaxation timeτtr and the scattering relaxation timeτ is uncertain. Furthermore,
the mobility in the sample (measured in zero magnetic field) changes with the gate voltage
or the carrier density, respectively. As has been verified by various test calculations,
the quantum oscillations are damped for larger scattering broadening. Increasing0 by
a factor of 10 reduces the oscillation amplitude by 80% (cf. also reference [13]). This,
together with changes of the lattice constant over the macroscopic array which averages
out the oscillations, is most probably the reason for the absence of flux-dependent quantum
oscillations in the experiment.

The origin of the three maxima of the experimental resistance below 0.5 T is still
unclear. Although they do not have the exact period of one flux quantum per unit cell, their
regular structure might be a remnant of highly damped quantum oscillations in combination
with the delicate structure brought about by the Hall conductivity.

5. Conclusion

We have measured the magnetoresistance of a two-dimensional electron gas with lateral
potential modulation. By means of a tunable gate voltage, we have studied the transition
from the weakly modulated 2DEG into the non-perturbative regime, which finally leads
to an antidot system with the corresponding typical resistance features. The aim of
the present work was to obtain some understanding of how the Weiss oscillations at
very weak modulation amplitudes evolve into the classical commensurability peaks in
the antidot regime. Our non-perturbative quantum-mechanical transport calculations allow
an interpretation of the measurements and even suggest the existence ofB-periodic
resistance oscillations for intermediate modulation amplitudes which have not yet been
observed in experiments. Although a direct comparison with experiments in this regime
is difficult because the necessary parameters are not known explicitly, we find that all
of the important features derive from the magnetic miniband structure. In particular,
the growing influence of the miniband conductivity leads to additional magnetoresistance
maxima between those arising from perturbative calculations. This results in an almost
structureless magnetoresistance in the transition regime followed by the formation of the
well-known antidot peaks.
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